Primitive Permutation Groups with a Sharply 2-Transitive Subconstituent

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharply 2-transitive groups

We give an explicit construction of sharply 2-transitive groups with fixed point free involutions and without nontrivial abelian normal subgroup.

متن کامل

Sharply 3-transitive groups

We construct the first sharply 3-transitive groups not arising from a near field, i.e. point stabilizers have no nontrivial abelian normal subgroup.

متن کامل

Doubly Transitive but Not Doubly Primitive Permutation Groups

The connection between doubly transitive permutation groups G on a finite set Cl which are not doubly primitive and automorphism groups of block designs in which X = 1 has been investigated by Sims [2] and Atkinson [1]. If, for a e Q, Ga has a set of imprimitivity of size 2 then it is easy to show that G is either sharply doubly transitive or is a group of automorphisms of a non-trivial block d...

متن کامل

Doubly Transitive Permutation Groups Which Are Not Doubly Primitive

Hypothesis (A): G is a doubly transitive permutation group on a set Q. For 01 E Q, G, has a set Z = {B, , B, ,..., B,}, t > 2, which is a complete set of imprimitivity blocks on Q {a}. Let j Bi / = b > 1 for all i. Denote by H the kernel of G, on .Z and by Ki and K< the subgroups of G, fixing Bi setwise and pointwise respectively, 1 .< i < t. Let /3 E Bl . Here j Q j = 1 + ht. M. D. Atkinson ha...

متن کامل

Sharply $(n-2)$-transitive Sets of Permutations

Let $S_n$ be the symmetric group on the set $[n]={1, 2, ldots, n}$. For $gin S_n$ let $fix(g)$ denote the number of fixed points of $g$. A subset $S$ of $S_n$ is called $t$-emph{transitive} if for any two $t$-tuples $(x_1,x_2,ldots,x_t)$ and $(y_1,y_2,ldots ,y_t)$ of distinct elements of $[n]$, there exists $gin S$ such that $x_{i}^g=y_{i}$ for any $1leq ileq t$ and additionally $S$ is called e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1995

ISSN: 0021-8693

DOI: 10.1006/jabr.1995.1268